Model results for the ionospheric lower transition height over mid-latitude
نویسندگان
چکیده
Theoretical calculations of the ionospheric lower transition height (LTH), a level of equal O and molecular ion densities, were performed and compared with empirical models by Zhang et al. (1996). This paper represents a substantial extension of the prior work by including the AE-C data of ion composition analysis and by detailed quantitative studies of the LTH simulation, and by creating a new LTH empirical model based on our simulations. Results show that: (1) the calculated LTH, in general, is lowest near 11–13 LT and reaches the diurnal maximum after midnight (about 01∼02 LT). The local time asymmetry becomes more evident in summer, when the time of minimum shifts to 16 LT. (2) The simulated LTH presents a dominant, semiannual variation during nighttime, and a pronounced annual variation during daytime. (3) The simulated LTH increases with solar activity at night and decreases by day, while the standard IRI option has an opposite tendency at night in summer and equinox. Therefore, the day-night difference of simulated LTH significantly increases with solar activity. (4) Both daytime and nighttime LTHs, tend to increase with the increasing geomagnetic activity Ap index, with a mean slope about 0.1455 km per Ap unit. (5) The diurnal variation of LTH is found to be more than 20 km, which is much larger than the seasonal variation under F107=100 and Ap=10. Thus, the diurnal and solar activity variations of LTH are more pronounced than its seasonal and magnetic activity variations.
منابع مشابه
Combining Neural Network with Genetic Algorithm for prediction of S4 Parameter using GPS measurement
The ionospheric plasma bubbles cause unpredictable changes in the ionospheric electron density. These variations in the ionospheric layer can cause a phenomenon known as the ionospheric scintillation. Ionospheric scintillation could affect the phase and amplitude of the radio signals traveling through this medium. This phenomenon occurs frequently around the magnetic equator and in low latitu...
متن کاملObservational Analysis of Variation Characteristics of GPS-Based TEC Fluctuation over China
In this study, the characteristics of the total electron content (TEC) fluctuations and their regional differences over China were analyzed by utilizing the rate of the TEC index (ROTI) based on GPS data from 21 reference stations across China during a solar cycle. The results show that there were significant regional differences at different latitudes. Strong ionospheric TEC fluctuations were ...
متن کاملPCA and vTEC climatology at midnight over mid-latitude regions
The effect of the thermospheric vertical neutral wind on vertical total electron content (vTEC) variations including longitudinal anomaly, remaining winter anomaly, mid-latitude summer night anomaly, and semiannual anomaly is studied at mid-latitude regions around zero magnetic declination at midnight during high solar activity. By using the principal component analysis (PCA) numerical techniqu...
متن کاملThe Southern Hemisphere and equatorial region ionization response for a 22 September 1999 severe magnetic storm
The ionospheric storm evolution process was monitored during the 22 September 1999 magnetic storm over the Australian eastern region, through measurements of the ionospheric Total Electron Content (TEC) from seven Global Positioning Systems (GPS) stations. The spatial and temporal variations of the ionosphere were analysed as a time series of TEC maps. Results of our analysis show that the main...
متن کاملVariation of ionospheric slab thickness over South Africa
Ionospheric slab thickness is defined as the ratio of TEC to maximum electron density of the F-region (NmF2), proportional to the square of the F2-layer critical frequency (foF2). It is an important parameter in that it is linearly correlated with scale height of the ionosphere, which is related to electron density profile. It also reflects variation of the neutral temperature. Therefore, ionos...
متن کامل